AD AQBBB663

£, FILE COPG

?‘&

DEPARTMENT OF STATISTICS

23S
C\‘

The Ohio State University " *

COLUMBUS, OHIO




STATISTICAL CONSIDERATIONS
IN CONTROL MODELS WITH APPLICATIONS

Wi e

w

by

J. S. Rustagi

[ ]
f

Fricsnrang
» 1

Py r—

P
%;:_'.

Technical Report No. 211
Department of Statistics
i The Ohio State University
Columbus, Ohio 43210
July 1980

§ Suppeorted by Contract NOOO 14-78-C-0543 (NR 042-403) by

: Office of Naval Research. Reproduction in whole or in

) part is permitted for any purpose of the United States
;i Government.




g' ’ Unclassified
E SECURMITY CLASHFICATION OF Tiit PAGE (When Date Katered) 7 —
; l REPORT DOCUMENTATION PAGE BEFORE COMPL EtinG FORN
L JT REPGAT NUMBER e 2. GOVT ACCESSION NO] 1 RECIPIENT S CATALOG NUMBER
P 5 081 dés
: : [ 4. TITLE Cend Subtitle) ' e g £
E : (g} Statistical Considerations in Control) Q Technical
; ) i ) Models with Applications, I - §. PEAFORMING ORG. REPORT NUMGER
7. AUTHOR(S) i CONTRACT OR GRANT NUMBERTS)
.- Al o , ) .
{ }Q;Jagdish S./Rustagi,) o { NQQﬁlu«78-C=dsu3}“’
&> LZ....,.,_ — C - ) ———j
$. PERFGRMING CRGANIZATION NAME AND ADDRESS 10, ::ggl:n:oenLKESSrTf.Naut:‘(')‘]Egv. TASK
i Department of Statistics, The Ohio State NRO4?-403
i University, 1958 Neil Avenue, Columbus,
Ohio 43210
- V1. CONTROLLING GFFICE NAME AND ADDRESS 12. REPORY DATE i
Office of Naval Research e mj N
. Arlington, Virginia 22217 (1A /T st Y
B 28

T8, MONITORING AGENCY NAME & ADORESS(I! dilferent

- Cantrelling Ollice) 18. SECURITY CLASS. (of thts repore;

Unclassified

LT D!C% ASSIFICATION/ BDOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) |

Approved for public release: Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the sbetract sntered In Rieck 20, If dilfarent fror) Repert)

18. SUPPLEMENTARY NOTES

9. KEY WORDS (Continus on reveras side if y axul {dentify by bleck number)

Control theory, statistical control model, dynamic programming,
patient care applications.

/
/

. ABSTRACT (Continus on reverse elde Il necossary and identily by Bleck aumber) Many applic v iOﬂS of

s

control theory, especially in areas other than engineering, requirsg
the estimation of the system equations from available data. Ap-
plications from patient care system, effect of air pollution on
health and dynamic economic models are discussed. A framework is
studied in which the control model can be applied using the data
provided by the system itself., Special objective functions are
utilized to illustrate the technique./T\

DD 585, 1473  eoition oF 1 nov 88 13 ousoLETE N
S/N 0102-014- 6601 :

SECURITY GLASIIFICATION QF THIE FAGE /When Dars Enrarac)
- P

Lot 2= L

W




i

|

T T Ty

PR AT g gy ey e ey eeew  esille
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Regulation and control play an important role ln many

systems. The system performance is generally utilized to
direct the system behavior towards the anticipated goal.

Such feedback mechanisms are necessary elements of many
processes. The immune response of a human body, the air
temperature in a house or the administration of drugs toc a
patient by a physician, exhibit the same feedback process.
The theory of such controlled processes is highly developed
and has been applied to several areas in scientific research,
in engineering, in business systems, and in government
operations.

In this paper the elements of a control process are
discussed from the point of view of statistical applications.
Several important applications are pointed out where the
introduction of the feedback mechanism and the development
of an optimal control policy is likely to improve the
ultimate performance of the process. Examples from patient
care in the recovery room, monitoring of air pollutants
aad dynamic economic models are given.

Usually, models of control theory used in applications
assume that the dynamics of the process are completely

known and certain function, measuring system performance,

1




R
o

g

I
§

i

[ap——"
-

B wann
. ’

- r—
. .

o

| ]

is to be optimized. Both deterministic and stochastic
models are used in practice and the derivation of optimal
control policies often reguire well known technique of
dynamic programming. However, the case when models involve
unknown parameters in the model, has not been treated well
in the literature.

We provide the framework in which the parameters of
the dynamic model can be estimated based on the data
generated by the process. Using certain well known
algorithms, these estimates are updated as the process
develops and the optimal policy is then obtained. It is
clear that the policy will heavily depend on the random
behavior of the process. These complications cannot be
completely avoided. Suggestions are made to use the
statistical properties of the estimates which are involved
in the dynamic programming solution of the control problem.
Linear control process with quadratic cost criterion is
used for the purpose of illustration. Such sclutions have
direct application to the patient care problems which have

received wide attention recently.

v idd

wh
skl :M

AT

e

g




1. Applications

In this section we consider a few applications where

AR s

the control theory could be utilized with advantage. The

, ¢ problem of patient care in the recovery room, and the

problem of monitoring of air pollutants are discussed.

[,
i '

There are many other areas such as in the study of dynamic

economic models where the control mechanism is evident. A

recent comprehensive account has been given by Chow {(1975)

- for the dynamic economic models.

Patient Monitoring

In monitoring patients in surgery or recovery room,
elements of a feedback control process are in evidence. A
common procedure in monitoring the well being of a fetus,
for example, is to monitor the levels of creatinine in
amniotic fluid and extriol excretion in maternal urine.

Similarly in the management of pharmacologic intervention

or in general patient care, the nurse-patient-physician
system acts as a feedback control process, for example see
Siefen et al (1979).

The model of patient care as a control process and
the resulting dynamic programming solution was discussed

by Rustagi (1868). Recent applications of the on.line

computers in the administration of patient care has been
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made in several areas, for reference, see Waxman and Stacy
(1965), Hammond, Kirkendall and Calfee, (1979%), Sheppard,
Kirklin and Xouchoukos (1974), Sheppard, Kouchoukos, Shotts
et al (1975), Sheppard and Kouchoukos (19768) and Pryor et
al (1975).

We discuss one of these studies in more detail below.

Sheppard and Kouchokos (1976) have provided several
situations where the feedback mechanism is practiced by
the help of electronic computers. For example the regula-
tion of arterial blocod pressure is carried out automatically
through monitoring blood pressures using certain closed
loop mechanisms. Sheppard, Kirklin and Kouchoukos (1974)
have recently demonstrated by actually performing decision
making tasks by computers in acutely ill patients. Such
decisions have been programmed on a computer so as to
monitor patients at the Alabama Medical Center for analysis
and treatment of impaired cardiac performance. Table I
provides the monitoring logic which is implemented auto-
matically. It should be noticed that the authors have
demonstrated the fact that a given set of logical decisions
can be performed automatically. These decisions are given
in advance and no attempt has been made to obtain the best
possible decision in a given situation.

Consider the case where several alternative procedures

are known to be practiced by the clinician. It would then

be worth while to choose the best possible decision under
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Table I.

Logic for Analysis and Treatment of
Impaired Cardiac Performance

Early After Operation

(Sheppard, Kirklin and Kouchokos, 1974)

Mean Left | Mean Cardiac Index
Arterial Arterial (£/min/m?) 7
Pressure Pressure Less More
(mm Hg) (mm Hg) than 2 2-3 than 3
7 or - Blood Blood Blood
less
7-14 - Blood Blood -
Less than Epinephrine - -
100
15-18
Epinephrine, Trimethephan -
More than Dopanine or or
100 isoproterenol nitroprusside
Less than same as above - -
100
More than
18
Epinephrine, Trimethaphan -
More than Dopamine, or or
100 isoproterencl Nitroprusside
plus
trimathaphan
or

nitroprusside

# f
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D the assumption of a certain optimality criterion.

p—

It whould be noticed that the feedback process in patient
care involves measurements of physiological and ccher variables
which behave in general according to some random phenomena.
Hence stochastiec contrcl theory models are more appropriate

to study the patient care process.

Air Pollution and Environmental Health

Another problem where optimal control theory can be applied

usefully, occurs in environmental health. It has been demonstrated
that high levels of air pollutants are injurious to health and
general wellbeing of living systems. Hence various forms of
governmental controls have been established to regulate

pollutants in the environment. Legal and punitive action are

. taken against those who are regarded as responsible for creating
o this hazardous environment. Large industrial corporations are
L subjected to such control and regulation by the U, S,

i;: Environmental Protection Agency.

In the monitoring for the purposes of regulation of air

poelliutants, elements of a stochastic control process are

evident. According to various Clean Air Acts of the U. S.

i Government, the standards for the various pollutants, such

as carbon dioxide, sulphur dioxide, particulate matter are
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specified by law. As soon as they exceed certain limits,

steps are taken to control the various sources of emission

—y
]

of the pollutants. The structure of a feedback process in




1

[

e e e —————

e e o
J o v iR

the regulation of air pollution, can be easily seen from
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this process of law enforcement.
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o National Economic Models

In the study of national economics, certain controls

TR

are made by the Federal Reserve Board through the manipula-

; tion of prime interest rate as well as through other steps

which may affect the money supply. The process of control

of the national economy requires the knowledge of the state

of the economy in terms of several important variables so
as to allow taking appropriate action.

Consider that the economy is described by the total
amount of consumer expenditure and private investment
expenditure. The control can be exercised by Government
expenditure and the total money supply. The optimality
criterion in this case can be considered to be minimization

of the discrepancy between the growth rates of consumption

and private investment expenditure by certain targeted
increase of these expenditures. This discrepancy may be
formalized by a quadratic c¢riterion. The model utilizing
some assumed numbers has been described by Chow (1975).
Similar discussion of macroeconomic models with random
parameters has been made by Havenner and Graine (1973). for
multiple time series, a recent study of the same type is by

Bovas (1980).
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In the next section we describe the basic models of

control theory and discuss the linear model in some detail.
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2. Control Model

In most of the engineering and other applications of
control theory, a general assumption made is that the

dynamics of the system are known. They are generally
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described by differential or difference equations. Both
deterministic and stochastic models are used and lead to
interesting problems depending on the type of objective
functions used for optimization of controls. There is an
extensive literature on control theory, some of which is
mentioned in the references here, for example, see Polak
(1971), Pshenichnyi (1971), Bertsekes (1976), Gihman and

3 . Skorohod (1979).

% . Ther: are many situations in applications such as in

; patient care, where the nature of the performance of the
system is not realistically described by deterministic
models and hence stochastic models must bé used to describe
such systems. In economics, for example, one is confronted
. with the problem of obtaining an optimal control pelicy,

.. when the economic system is being affected by a large number
of uncertain factors. Chow (1973) has considered the

problem of finding an optimal policy in case of economic

dynamic systems. Not only the measurements in such systems

[ —

are random but also the form of the system performance has

B can sl
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to be approximated by some hypothetical model. In
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econometrics, generally one uses a linear model in associating
the output of the system with the input and the control
utilized. Using quadratic cost criterion, optimal policies
are derived. Besides being computationally feasible, such
linear models describe the phenomenon fairly well and have
been fully treated in various contexts in the literature.

Box and Jenkins (1968) have discussed statistical models for
control of time series. We first discuss the case of a

deterministic control model. The system is generally described

by a state vector X of dimension n at time t. Let Ny be the

t

contreol vector in p-dimensions. In the case of discrete

) ey,

time points, t = 0, 1, 2, ..., T, the deterministic control

process can be described by the difference equation given

s s e myethis i

below:

Ree: = 8¢ Reo Beds £ =0, 1, 2, ..., T-1 (2.1)

where g, are known functions given for the system. If there
is feedback present in the system, the present state of the
system is used to guide the system back to its normal operation.

That is, we assume that

Uiy = Bixg, 2,) (2.2)

That is, the discrepency of the state vector Xy from its

PR
¥ .

desired or target value it’ is used to design the control.

} The control is chosen in such a way so as to optimize

10
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the overall performance, for known k,

T
J(gg) = tgo k(R s Z)- (2.3)

chO) is implicitly a function of gy ]
Following forms of the function k, are commonly utilized

in practice.

2 _ P _ -
(1) k(zt, m‘) (xt st) (Et ft) + a Ule Ugs (2.4)

a8t Reo t<T -1

N’
n

~

~N

.5)
X'r Xps t=T

where a is some constant.

The basic problem of control theory is to find a set of

control Ugs Uys ++es Up_y SO as to optimize J. Solutions to
this problem are generally obtained through the technique of
dynamic programming. There is an extensive literature on
dynamic programming, for a brief description of the technique,
the reader is referred to Rustagi (1976).

The dynamic programming technique has been extensively
used in various applications. In defense contexts, the
technique was suggested by Rustagi and Doub (1970) for optimum
distribution of Armor. For an extensive coverage of the art
and theory of dynamic programming, see Dreyfus and Law (1877).

In engineering literature, usually a continuous process
is considered. Pontriyagin's Maximum Principle has been

developed to give a mathematical foundation for such control

11
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processes. For a brief description of Maximum Principle and
its comparison with Dynamic Programming the reader is
referred to Rustagi (1976). Corresponding minimum principles
have been advanced by several authors, a recent paper of

interest is by Varaiya and Walrand (1980).

Stochastic¢ Control Model

Suppose now the state of a system is given by n-dimen-

sional random vector Xy at time t. Let Uy denote the p-dimen-
sional vector of controls at time t and %t be vector of n-

dimensional random disturbances. Usually the control system

can be described by the equation

Xpa1 = B8p(Xys Yes E¢ds T =1, 2, .o, T-1 (2.6)

where gy is a sequence of known functions.

‘he system with feedback is given in Figure 2.1. In
this case the systems deviation from target value already
prescribed for the system state Xy is utilized for adjustment

of the system.

In engineering literature usually it is assumed that

¥y cannot be observed directly and instead we observe y. with

some random error Ny That is,
N,

Yt © h(ﬁt’ Qt) (2.7)

The performance index or objective criterion function of the

system now has to be some parameter of the distribution of
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;i the cost which is random. In this case, we may optimize
E(J(x4)) since J(X;) is a random variable. The problems of
existence and characterizations of optimal controls in the
case of stochastic systems, are discussed in detail by Aoki
(1967). In the next section, we discuss a linear control

process.

INPUT : OUTPUT

1 P — 3  SYSTEM >

o A

FEEDBACK

Figure 2.1
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3. Linear System and Quadratic Cost

In this section we assume a linear control process and
quadratic cost function. We first consider the univariate

case, Let

Kpgp = @y Xy + St Uy + Et t =0, 1, 2, ... (3.1)

where Oy s Bt are the parameters of the model, Xy is the state
of the system at time t and Uy is the control. &t are random
errors. Assume that it is not X, but y, which is observed.
Let

Yy T Xp +ong (3.2)
where n, are random errors.

Consider for the example, the cost function to be the

terminal control function
J = x..° (3.3

Let T-1 .
X = (yOa yls LA ] YT_.]_)

To optimize E(J), we use in this case, the Principle of
Optimality developed by Bellman leading to dynamic programming
technique. We optimize E(xTZIXT-l) at first.

We assume here a general form of the error structure
and prior information than usually assumed. Let the joint

distribution of (at, Bt’ Egs nt) be multivariate normal with

t :
mean J° and covariance Et where
v
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gt = CQuy s Eet: ugt, unt)‘ ;
and 1
Oaat OaBt duat oant
- % %8 g en
g - Oeq ors Gggt Ogn
°nat g cnat O
Now
E(xTzlzT_l) = E(aT-le-l+BT—1uT-1+£T-l‘XT-I)Z
z E[xTiloaaT—l+uNilUBBT“1+U£§—1+2XT_1uT_1(oaé-l+
+ uaT—luBT—l) + ZXT_l(Oag-l +UQT-1U€T_1)
+ 2uT_l(OB€_l + UBT'l ug_l)lZT*l] (3.u4)

This expression can be further simplified if we are given the
T-1

conditional distribution of x, given y Let
A
E(x yt) = v (3.5)
¥ t :
and
ty .
V(xtlz ) = 8.7, (3.8)
We then have,
2  Nely o~ T-1,, 2 2 2 T-1 T-1
ECxgly " 7) = 0 7T (Agpk 4vp2 ) 4 upZ, Ogp Tt o
- - - - T- -
* 2up_yvp€ogg ey g T2 Co e T T
T-1 T-1 T-1
+ + .
2uT_l(o3€ Mg Tug )
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The optimal control ug_; is then obtained by minimizing (3.7)

with respect to Up_y given by

i
=

2 T-1 T-1
u z - * ug Wy *vrn_; (o,

Twly=1 T~1
a1 (UBB ) CGBB

Tw]l T-1 T=1
+
g tuy THgt )

W
[
¢

(3.8)
‘- - . %
) Similarly we can follcw backwards and obtain Up_p-
In the case when Ay s Bt’ Et’ n, are assumed to be mutually

¢ _ independent, the covariance Et is diagonal and the expression
~

(3.8) reduces to the one's usually found in text-books, for

example, see Acoki (1867) and De Groot (1970).

Bayes Control Policies

In stochastic control theory when the parameters of the
model are not known, Bayes methods are commonly used to obtain
the optimal control policies. A general formulation of the

adaptive Bayes control policies has recently been given by

Suzuki (1979).

]
Consider the following linear model. :
Xee1 * R Ko ¥ Be Ne ¥ heo t=0,1, 2, ..., T-1

where x, is p-dimensional vector, u, is a g-dimensional vector i
x !

At

and &, are random p-dimensional random vectors. Assume further
v

that,

ye = H +n

He X¢ * Dy o t = 0, 1, 2, vu., T.
")

with Y being a r-dimensional vector and n_ a randem vector.
N

t
N
The matrices A_, B, and H, are assumed to be known. A general
at? At At

16




assumption for Bayes analysis made is that the distributions
of gt and . are known except some unknown parameters 0, & 0,.

4]
For simplicity of computations, assumptions are made that £,

~
have multivariate normal distribution with unknown means 0
but known covariance matrix },, for t = 0, 1, 2, ... T-1.
Similarly Qt are assumed to ;e independent of Et but distri-
buted normally with unknown mean 92 and known covariance matrix
22. The Bayes strategies are computed by assuming prior dis-
tributions on 9> 9y
that their joint distribution is completely known appropriate

and xg. In this case, it is assumed
~

multivariate normal distribution. For a the performance

function of the quadratic type,
T
J o= tzlc?‘(‘t Bt Xt * Be-1 Qe-1 Be-1 * Ve Re 7
with known matrices zt’ %t & ﬁt’
computed by dynamic programming, first for t = T and then

the optimal pelicy can be

moving backwards. The details are given by Suzuki (1979).

In practical problems suggested earlier, the matrices
of the model are not known. However, they can be estimated
from data already available by experimenters on those models
when the process under control is observed for a sufficiently
long period of time. This aspect of the control problem is

discussed in the next section.
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5. Statistical Considerations

Consider the case when the control process has been
observed for a certain period of time. Assuming the form
of the dynamics of the process, such as linearity, the
unknown parameters of the process equations can now be
estimated from the data. These estimates can then be used
for statistical control.

Suppose the model at time t is

+
€t

Tor illustration,

Xpgpp = O Xy + Bt u, (5.1)

with assumptions on the errors €y -
consider the situation when et's are independently and
identically distributed with means 0 and variance o0?, and
for estimation purposes, the parameters oy and B, have
remained constant during t = -T, - T+, ..., -i, 0, say,
equal to ag and BO respectively. In this case the least

squares estimates are given by the following normal equations,

where the summation is from t = -T to t = 0.

x.* Ixy ug % Ixppy %y

zxtut Lug By X ICLH (5.2)

It is well known that under the additional assumptions of

normality of errors €gs the above estimates are also maximum

likelihood estimates of ag and B,. The general system of
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t equations when the model contains more parameters can be

i similarly obtained, for example see Anderson (1971, p. 183).

In case x is a p~-dimensional vector, and u is a

t t
g-dimensional vector of controls, we consider the model

X = A, x, + Et ug * Et’ (5.3)

Here Qt is a p x p matrix of unknown parameters, Et is a

P x q matrix of unknown parameters and € is a p-dimensional

t
vector with mean 0 and covariance matrix A. The normal
n

equations in such a case are given by

Re-1 Xt-1 Ixeo1 ¥t £0 z%ft-l Xt
Re Bely Pue Rt B L ¢ (5.4)

under the same assumptions as in the univariate case and

i the estimates of Q are given by

_ l ~ ~ ~ ~ .
A= T = A%y - Bud(xe - Axe ) - Rt

The detailed development of the estimates and the associated
theory is given by Anderson (1971, p. 203).

The control process will utilize the estimates of
&O and éO as the initial estimates and use them to update
the estimates as the data accumulates at each stage of the

decision making process as t goes from 0 to T. Some simpler

forms of recursive estimates, given by Albert and Gardner

(1966) and Albert (1972) are discussed next. They can be
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implemented in any adaptive estimation scheme.

Recursive Estimates

Most of the work in control theory in engineering

applications is confined to the case when the parameters of
the model are known and are not modified during the
operaticn of the control process. When continuous modifi-
cation of the joint density of the unknown parameters can
be made as new observations become available, the calcula-
tions become difficult. In place of using the Bayesian
approach that prior density of the parameters is given, we
use henceforth the classical estimate the parameters as
given in (5.2) or (5.4). We use the recursive estimation
procedure for the parameters using observations from the
process and the control during the operation of the process.
Let the linear model considered in equation (5.1) be
simplified by using Qt = (at, 8,) and Qt = (%4, ut) s¢ that

(5.1) can be written as

+ € (5.5)

Xe41 7 Ry Q¢ t

Let Qt is the estimate of Qt based on (t-1) observations.

X, is the observed state at time t. We would like a proce-

t
dure to updata gt based on L

~ ~

Definition: @. is a recursive estimate of 0 if 0. is

obtained by updating gj by the observation X3 That is,

20
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= g:(0;, xj) (5.6)

Qj+l jtag

The suggested recursive estimate of the differential

type by Albert and Gardner (1967, p. 111) is the following.

Q541 = 85 + 250xy - nIgy) (5.6)
with
25 % Bs Iy (5.7)
and 3
By = By ) - i?j;{ 23)(Ei:1 Ry (5.3)
Aj Aj-l Aj

The above recursive estimates can be written in closed form

if we are given the initial estimates 2o and %O' In that

case
k
- -3 ay=1 _
’%k - (’%0 + jzl Ej Ej) 3 k - 1, 2’ s s s (5.9)
and
5 - -1 4 % .
Q541 = By(Bg " 9y * Lo Pixd. 120 (5.10)

The convergence and other optimal properties of these
recursive estimates are enumerated by Albert and Gardner
in their book.

A recent survey of recursive estimation procedures
has been given by Davis (1977) utilizing concepts of
innovative sequences due to Kailath (1968). However, most
of this survey is concerned with continuous processes.

Assuming now that the process equations are being

updated according to the procedure described above, in

21
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equations (5-6) - (5.10), we assume that the model for

control is now the following

® (5.11)

t+l

Suppose

t-1
X (xo, Xys +ves xt_l)

t-1 _ o,
g - (AO’ ‘ﬁ’ “ .0y Ut_l),

and t = 1, 2, ..., T.

Let the performance function for this process be the

following
i J = Til (a, x,2 + b, ud? + c. x& (5.12)
i kg Tt T t Yt © XT

where a;, bt and ¢ are known for t = 0, 1, ..., T-1. The
i optimization procedure is concerned with finding Ugs Uys --ns
. Up_j SO as to minimize

E(leT-l, %T-l)

) Let V. (x,.) = minimum cost if the process is in state t
. with state variable X,. Note that Vt(xt) and the discussion
- what follows is conditional on xt and %t. This fact is not
b

expressed in the notation.

Using Principle of Optimality of dynamic programming,

-~ -~

o 2 2
Vt(xt) = min{ a_ x +b u + Vt+l(at x, *+ By ut))

3 T r ot
f g Uy
: i t=1,2, ..., T-1, and
; VT(xT) T ¢ K. (5.13)
22
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Starting backwards, we first consider vT-l(xT—l)'

- (3 2 2
Ve (Xpg) = min {ap_y %xpZy * bp_y uply
Tl

~

2
t Bp_y ugp_q) )

+ c(aT_l Xp_y

Hence the optimal value of Up_y is obtained as follows.

_cap_y By Xp_y

U R (5.14)
21 o
bp_y * cBply

and the corresponding value of the cost function is given by

A Eal

- czaT 1 BTzl ,
f L - - - = [
VT_l(xT_l} - (uT_l + caT-l b R g 2 )XT_l (5-1.-))
T-17¢ Pro1
or
% _ = 2 -
Vpli (¥pop) = Ppog¥py (5.16)
Pr_3 is the coefficient of fol in (5.15). Similarly, we
obtain
A -~ ”~
Pri_q Qm_»n Bm_ o Xe_
uok (ke o) = oIzl JTo2 Preg ¥ro2
T-2 T-2 b A g2
T-2 * Ppo2 Prop
and

% . 2
VT-Z(XT-2) = Pp_g Xp_o- (5.17)
In general, one obtains the optimal controls fullowing the

above process given by
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AT

e e
) oaten

) a, B, x
ui(x,) = - £ttt (5.18)
t t b + B 2
t © Pr+1 Pt
_ = 2 3
VE(x) = py %%, (5.19)
1
with A, N A, :
- ~ ~ P a B
p =a_ +p SO 5.2 S (5.20)
t 7 Pr+1 Pr
t =1, 2, cu., T-1 (5.20)
and
pT = Q. (5.21)

Many other performance functions can be similarly used to
obtain the optimal pplicy. Large number of such problems in
the deterministic cdse are discussed in a recent survey on

art and theory of dynamic programming by Dreyfus and Law (1977).

The stochastic bghavior of the optimal control pélicy
seems fairly complicated in general. In case of UTfl given
by (5.13), we find that it is approximately the ratio of
the product and square of random variables which themselves
have a complicated distribution. In practical situations,
we shall assume that the number of observations on which the
estimates of a, and B, are based, is large. Therefore, using

asymptotic theory, we have that a, + a, and By > B in preba-

t
bility, allowing us to use the optimal control policy,
These estimates or their generalizations are applicable

to various applications discussed earlier.
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